Pt(iv) derivatives of cisplatin and oxaliplatin with phenylbutyrate axial ligands are potent cytotoxic agents that act by several mechanisms of action
نویسندگان
چکیده
Our study demonstrates that Pt(IV) derivative of cisplatin, with two axial PhB ligands, ctc-[Pt(NH3)2(PhB)2Cl2], is a very potent cytotoxic agent against many different human cancer cell lines and is up to 100 fold more potent than cisplatin, and significantly more potent than the Pt(IV) derivatives of cisplatin with either two hydroxido, two acetato or two valproato ligands. The high potency of this compound (and some others) is due to several factors including enhanced internalization, probably driven by “synergistic accumulation” of both the Pt moiety and the phenylbutyrate, that correlates with enhanced DNA binding and cytotoxicity. ctc-[Pt(NH3)2(PhB)2Cl2] inhibits 60–70% HDAC activity in cancer cells, at levels below the IC50 values of PhB, suggesting synergism between Pt and PhB. Mechanistically, ctc[Pt(NH3)2(PhB)2Cl2] induces activation of caspases (3 and 9) triggering apoptotic signaling via the mitochondrial pathway. Data also suggest that the antiproliferative effect of ctc-[Pt(NH3)2(PhB)2Cl2] may not depend of p53. Pt(IV) derivatives of cisplatin with either two axial PhB or valproate ligands are more potent than their oxaliplatin analogs. ctc-[Pt(NH3)2(PhB)2Cl2] is significantly more potent than its valproate analog ctc-[Pt(NH3)2(VPA)2Cl2]. These compounds combine multiple effects such as efficient uptake of both Pt and PhB with DNA binding, HDAC inhibition and activation of caspases to effectively kill cancer cells.
منابع مشابه
Potentiation of mitochondrial dysfunction in tumor cells by conjugates of metabolic modulator dichloroacetate with a Pt(IV) derivative of oxaliplatin.
The molecular and cellular mechanisms of enhanced toxic effects in tumor cells of the Pt(IV) derivatives of antitumor oxaliplatin containing axial dichloroacetate (DCA) ligands were investigated. DCA ligands were chosen because DCA has shown great potential as an apoptosis sensitizer and anticancer agent reverting the Wartburg effect. In addition, DCA reverses mitochondrial changes in a wide ra...
متن کاملInfluence of the Number of Axial Bexarotene Ligands on the Cytotoxicity of Pt(IV) Analogs of Oxaliplatin
We present the synthesis and cytotoxic potencies of new Pt(IV) complexes with bexarotene, an anticancer drug that induces cell differentiation and apoptosis via selective activation of retinoid X receptors. In these complexes bexarotene is positioned as an axial ligand. The complex of one bexarotene ligand attached to Pt(IV) oxaliplatin moiety was potent whereas its counterpart carrying two bex...
متن کاملNovel N-2-(Furyl)-2-(chlorobenzyloxyimino) ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-activity Relationship
Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cy...
متن کاملThe binding assessment with human serum albumin of novel six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands
The interactions between platinum complexes and human serum albumin (HSA) play crucial roles in the distribution, metabolism, and activity of platinum-based anticancer drugs. Octahedral platinum (IV) complexes represent a significant class of anticancer agents that display molecular pharmacological properties different from cisplatin. In this study, the interaction between two Pt(IV) complexes ...
متن کاملNovel N-2-(Furyl)-2-(chlorobenzyloxyimino) ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-activity Relationship
Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cy...
متن کامل